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Background: The emerging mobile colistin resistance gene, mcr-1, is an ongoing world-
wide concern and an evaluation of clinical isolates harboring this gene is required in Ko-
rea. We investigated mcr-1-possessing Enterobacteriaceae among Enterobacteriaceae 
strains isolated in Korea, and compared the genetic details of the plasmids with those in 
Escherichia coli isolates from livestock.

Methods: Among 9,396 Enterobacteriaceae clinical isolates collected between 2010 and 
2015, 1,347 (14.3%) strains were resistant to colistin and those were screened for mcr-1 
by PCR. Colistin minimum inhibitory concentrations (MICs) were determined by microdi-
lution, and conjugal transfer of the mcr-1-harboring plasmids was assessed by direct mat-
ing. Whole genomes of three mcr-1-positive Enterobacteriaceae clinical isolates and 11 
livestock-origin mcr-1-positive E. coli isolates were sequenced. 

Results: Two E. coli and one Enterobacter aerogenes clinical isolates carried carried IncI2 
plasmids harboring mcr-1, which conferred colistin resistance (E. coli MIC, 4 mg/L; E. 
aerogenes MIC, 32 mg/L). The strains possessed the complete conjugal machinery except 
for E. aerogenes harboring a truncated prepilin peptidase. The E. coli plasmid transferred 
more efficiently to E. coli than to Klebsiella pneumoniae or Enterobacter cloacae recipi-
ents. Among the three bacterial hosts, the colistin MIC was the highest for E. coli owing to 
the higher mcr-1-plasmid copy number and mcr-1 expression levels. Ten mcr-1-positive 
chicken-origin E. coli strains also possessed mcr-1-harboring IncI2 plasmids closely re-
lated to that in the clinical E. aerogenes isolate, and the remaining one porcine-origin E. 
coli possessed an mcr-1-harboring IncX4 plasmid. 

Conclusions: mcr-1-harboring IncI2 plasmids were identified in clinical Enterobacteriaceae 
isolates. These plasmids were closely associated with those in chicken-origin E. coli strains 
in Korea, supporting the concept of mcr-1 dissemination between humans and livestock. 
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INTRODUCTION

One of the few remaining options for the treatment of infectious 

diseases caused by multiple-drug resistant gram-negative bacilli 

is colistin [1]. Accordingly, the emerging mobile colistin resis-

tance gene, mcr-1, encoding a phosphoethanolamine transfer-
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ase has become a critical threat to public health [2]. Following 

its initial report [2], studies examining the global dissemination 

of this gene have rapidly emerged. Various Enterobacteriaceae 

carrying mcr-1-plasmids from humans, animals, and environ-

ments have been identified in Asia, Europe, Africa, and North 

and South America [3]. The subsequently detected mcr-1.2 de-

rivative [4] and other subtypes (mcr-2 [5], mcr-3 [6], and mcr-4 

[7]) are an additional threat. Extensive colistin usage in farm an-

imals [8] and unrestricted international migration of humans [9], 

livestock, and agricultural products have facilitated the rapid 

spread of the mcr genes [10]. 

The mcr-1 gene is carried by conjugative plasmids belonging 

to various incompatibility groups: IncI2, IncX4, IncHI1B, In-

cHI2A, IncFII, and IncFIB [11]. The genomic environment of 

the mcr-1 gene differs by plasmid type [12], frequently being 

bracketed by one or two copies of ISApl1 [13]. 

The co-harboring of resistance genes for third generation 

cephalosporins and carbapenems adds further complications. 

Additional plasmids carrying blaCTX-M encoding extended-spec-

trum beta-lactamases (ESBLs) [14, 15], blaNDM [14, 16] and 

blaIMP [15] encoding metallo-beta-lactamases, and blaKPC [17] 

encoding serine carbapenemases are often found in mcr-1-pos-

sessing strains. Moreover, the mcr-1 gene is co-carried by a 

plasmid containing the blaCTX-M-55, -14, -65, and blaNDM-5 genes [18, 

19]. Plasmids carrying multiple resistance genes are of further 

concern because bacteria could become extensively- or pan-

drug resistant by a single event of horizontal gene transfer. 

An E. coli strain carrying a mcr-1 plasmid was first reported in 

2015 in livestock and humans [2]; however, based on a retro-

spective analysis, the emergence of the gene dates back to the 

1980s in E. coli from chicken specimens [8]. Similar to the case 

of NDM-1 [20], the mcr-1 gene was reported as a novel emerg-

ing resistance gene following worldwide dissemination [3]. The 

origin of this problematic gene is still controversial; however, 

based on the fact that the gene is predominant in bacteria from 

food animals and that colistin is extensively used in the livestock 

industry [8], food animals are considered responsible for 

spreading the mcr-1 gene.

We investigated mcr-1-possessing Enterobacteriaceae among 

Enterobacteriaceae strains isolated in Korea. We identified one 

Enterobacter aerogenes strain harboring an IncI2 plasmid co-

carrying mcr-1 and blaCTX-M-55 and two E. coli strains possessing 

a mcr-1-carrying IncI2 plasmid along with plasmids containing 

multiple-drug resistant genes, including blaCTX-M-55 and blaNDM-9, 

from clinical specimens. The mcr-1-carrying plasmids were ex-

amined in terms of horizontal gene transfer, plasmid copy num-

ber, and gene expression, and the genetic details of the plas-

mids were compared with those in E. coli strains from livestock. 

METHODS

1. Bacterial strains 
We retrospectively analyzed a total of 5,206 clinical isolates, in-

cluding 2,547 Klebsiella pneumoniae and 2,659 E. coli strains, 

collected between 2011 and 2015 through the Korean Antimi-

crobial Resistance Monitoring System, and 4,190 carbapene-

mase-producing Enterobacteriaceae (CPE) clinical isolates, in-

cluding 2,738 K. pneumoniae, 565 E. coli, and 887 Enterobac-
ter spp. strains, collected between 2010 and 2015 at the Na-

tional Laboratory Surveillance of CPE. Eleven E. coli strains from 

livestock (10 chicken and one porcine) [21] were included in 

the study for whole genome sequencing.

2.  Determination of the minimum inhibitory concentration 
(MIC) of colistin

From the 9,396 Enterobacteriaceae clinical isolates, colistin-re-

sistant strains were first obtained using 1 mg/L colistin media. 

For the selected putative colistin-resistant strains, the MIC of co-

listin was determined using the microdilution method with Muel-

ler–Hinton (MH) broth, following the recommendations of the 

Joint CLSI-EUCAST Polymyxin Breakpoints Working Group [22], 

and the confirmed colistin-resistant strains exhibiting colistin 

MIC ≥2 mg/L were used for further analysis. 

3. DNA manipulation and conventional PCR
Genomic DNA of colistin-resistant strains was extracted by the 

boiling method, and PCR was performed using the AccuPower 

Taq PCR Premix (Bioneer, Daejeon, Korea). Using the genomic 

DNA as a template, conventional PCR was carried out to amplify 

the mcr-1 [2], mcr-3 [6], and mcr-4 [7] genes, as previously 

described. The mcr-2 gene was amplified using newly designed 

primers mcr-12-281F (5´-CTTATGGCACGGTCTATGA-3´) and 

mcr-12-93R (5´-CACATTTTCTTGGTATTTGG-3´) under the fol-

lowing conditions: 30 seconds at 97°C for pre-denaturation; 30 

cycles of 10 seconds at 97°C, 20 seconds at 53°C, and 30 sec-

onds at 72°C for amplification; and 5 minutes at 72°C for final 

amplification. Amplified products were subjected to direct se-

quencing. 

4. Whole genome sequencing and comparative genomics
The whole bacterial genomes of the three clinical Enterobacteri-
aceae isolates harboring the mcr-1 gene underwent single-mol-
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ecule real-time (SMRT) sequencing using a PacBio RSII instru-

ment (Pacific Biosciences, Menlo Park, CA, USA), as previously 

described [23]. The 11 mcr-1-possessing plasmids in E. coli 
strains from livestock isolated between 2013 and 2015 in Korea 

[21] were sequenced by SMRT. Further, these plasmids were 

comparatively analyzed with the three pUSU-ECO-12704_4, 

pCREC-527_4, and pCRENT-301_1 plasmids from clinical iso-

lates. The 324-bp sequences of the replication origin were ob-

tained from the 11 plasmids, and molecular phylogeny was an-

alyzed together with the three plasmids in the clinical Entero-
bacteriaceae strains.

5.  Determination of gene copy number by quantitative PCR 
(qPCR) 

For the three clinical Enterobacteriaceae isolates, the total DNA 

was extracted by boiling and used for qPCR. The CLR5-F and 

-R primers targeting the mcr-1 gene and primer pair incI2_63-

86 (5´-GATTTGTAAATGCAGAAAACGAGG-3´) and incI2_273-

250 (5´-GAGTTGATATTTCCTTCTCATGGA-3´) targeting the 

incI2 gene were used. The plasmid copy number was normal-

ized to that of the gyrB gene using gyrB-F_1466-1489 (5´-GT-

TATCACAGCATCATCATCATGA-3´) and gyrB-R_1650-1627 

(5´-TTCGTCGTCTTTAATGTACTGTTC-3´) and that of rpoD using 

rpoD-F_883-906 (5´-C-3´) and rpoD-R_1085-1062 (5´-TTGA-

TATCTTTAACCTGCTCGATG-3´). Standard curves were gener-

ated using five 10-fold serial dilutions of DNA for each target 

gene. All experiments were carried out in duplicate and at least 

twice independently.

6. RNA isolation and reverse transcription (RT) qPCR 
Total RNA was extracted at the exponential phase using the 

RNeasy plus mini kit (Qiagen, Hilden, Germany). The mcr-1 

transcriptome was determined using the LightCycler RNA am-

plification kit with SYBR green I (Roche Diagnostics, Basel, 

Switzerland) and normalized to that of rpoD and gyrB using the 

primer sets mentioned above. Experiments were carried out in 

duplicate at least twice independently.

7. Plasmid transfer by bacterial conjugation 
Spontaneous rifampin-resistant mutants of E. coli J53, K. pneu-
moniae ATCC 13883, and E. cloacae ATCC 23355 were used as 

recipients. K. pneumoniae ATCC 13883 possesses undisturbed 

IncFII and IncFIA plasmids, and E. cloacae ATCC 23355 does 

not contain marked plasmids, as determined by plasmid mini 

prep. Equal amounts of exponential cultures of the donor and 

the recipient strains were mixed, incubated either in MH broth 

or on a membrane filter (Merck Millipore, Darmstadt, Germany) 

for 12 hours, and then spread on Brain Heart Infusion agar 

containing rifampin (40 mg/L) and colistin (2 mg/L). Each col-

ony was tested by the disk diffusion method and confirmed by 

PCR. The plasmid transfer frequency was calculated based on 

the number of transconjugants per donor.

8. Accession numbers 
Nucleotide sequence data are available in the GenBank nucleo-

tide database under accession numbers KY657478 (pUSU-

ECO-12704_4), KY657476 (pCREC-527_4), and KY657477 

(pCRENT-301_1).

RESULTS 

1.  Identification of three Enterobacteriaceae clinical isolates 
carrying the mcr-1 gene 

Of the 9,396 clinical Enterobacteriaceae strains tested, 14.3% 

(1,347/9,396) strains, including 15.3% (810/5,285) K. pneu-
moniae, 10.5% (340/3,224) E. coli, and 22.2% (197/887) En-
terobacter spp. strains, exhibited colistin MIC ≥2 mg/L. Among 

these, the mcr-1 gene was identified by PCR in two E. coli iso-

lates, USU-ECO-12704 and CREC-527, collected in 2012 and 

2015, respectively, and in one E. aerogenes strain, CRENT-301, 

isolated in 2013. These strains were all isolated from urine 

specimens collected in different provinces of Korea (Table 1). 

The mcr-2, mcr-3, and mcr-4 genes were not detected in any of 

the isolates. No known amino acid substitution in PmrABC con-

ferring colistin resistance was observed in the three chromo-

somes. The E. aerogenes CRENT-301 strain had the highest co-

listin MIC (32 mg/L), and the E. coli USU-ECO-12704 and 

CREC-527 strains exhibited identical colistin MICs of 4 mg/L 

(Table 2). 

Table 1. Clinical isolates used in the study

Strain 
Isolated* in

Resistant to [33]
City Year

Escherichia coli  
USU-ECO-12704

Ulsan 2012 Gentamicin, tobramycin, 
tetracycline, ciprofloxacin, 
ampicillin, ceftazidime, colistin

Enterobacter aerogenes 
CRENT-301

Incheon 2013 Cefotaxime, colistin

E. coli CREC-527 Seoul 2015 Tetracycline, ampicillin, 
ceftazidime, imipenem, colistin

*All isolates were from urine specimens.
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2. Colistin MICs conferred by mcr-1 
Transconjugants carrying the mcr-1-possessing pUSU-ECO- 

12704_4 exhibited various MICs of colistin according to the 

bacterial host. The E. coli transconjugant carrying the plasmid 

exhibited an 8-fold-elevated colistin MIC (4 mg/L), while the K. 
pneumoniae transconjugant had a 4-fold higher MIC (8 mg/L), 

and the E. cloacae transconjugant presented a 2-fold higher co-

listin MIC (1 mg/L; Table 2). The transconjugant plasmid copy 

number was the highest (11 copies/genome equivalent [GE]) in 

the E. coli host, six copies/GE in K. pneumoniae, and the lowest 

(one copy/GE) in E. cloacae. mcr-1 gene expression corresponded 

to the plasmid copy number of the bacterial hosts. 

3.  Genomic insights into the three mcr-1-positive 
Enterobacteriaceae strains 

The genome of E. coli USU-ECO-12704 sequence type (ST) 

1011 (adk-fumC-gyrB-icd-mdh-purA-recA, 6-4-159-44-112-1-

17) consisted of a 5.0-Mb chromosome containing seven drug 

resistance genes (blaTEM-1, dfrA, aadA, sul1, mphA, aac(3)-II, 
and blaCTX-M-55) and five plasmids: a 94,115-bp p0111-type plas-

mid possessing a tet(A) gene; a 89,509-bp IncFIB 1/IncFII 34 

plasmid carrying oqxA/oqxB genes; a 70,600-bp IncFII plasmid 

containing the blaTEM-1, blaCTX-M-55, and fosA genes; a 60,948-bp 

IncI2 plasmid carrying the mcr-1 gene; and a 20,902-bp cryptic 

plasmid of unidentified incompatibility group. 

The E. coli CREC-527 strain belonged to ST101 (43-41-15-

18-11-7-6). Its genome consisted of a 4.8-Mb chromosome 

possessing the blaTEM-1, dfrA, tet(A), aph(3’)-1, mph(A), and 

catA drug resistance genes and five plasmids: a 118,328-bp 

p0111-type plasmid carrying fosA, dfrA, aadA2, sul1, mphA, 

and blaNDM-9; a cryptic 96,521-bp p0111-type plasmid; a 

79,911-bp IncFIB plasmid carrying strA and blaCTX-M-27; a 

60,959-bp IncI2 plasmid carrying the mcr-1 gene; and a cryptic 

8,678-bp plasmid of unidentified incompatibility group.

The genome of E. aerogenes CRENT-301 consisted of a 5.3-

Mb chromosome without any acquired resistance determinants 

and two plasmids: a 67,073-bp IncI2 plasmid carrying mcr-1 

and blaCTX-M-55 genes and a 33,722-bp cryptic plasmid. 

4.  IncI2 plasmids carrying the mcr-1 gene in clinical E. coli 
isolates

The three mcr-1-plasmids were designated as pUSU-ECO-12704_4 

in E. coli USU-ECO-12704, pCREC-527_4 in E. coli CREC-527, 

and pCRENT-301_1 in E. aerogenes CRENT-301. The structure 

of the three IncI2 plasmids differed from that of the first identi-

fied pHNSHP45 containing a type IV secretion system and a re-

laxase [2]. pCRENT-301_1 shared the most similarity with pHN-

SHP45 (Fig. 1A); compared with pHNSHP45, pCRENT-301_1 

contains ISEcp1-blaCTX-M-55 downstream of the parA gene, IS903B 

interrupting a pilU gene resulting in a 93-aa-premature 211-aa 

PilU protein, and a differently arranged shufflon. The other two 

plasmids in E. coli strains were indistinguishable (99% nucleo-

tide identity) and have a replication initiation protein sharing 

97.95% aa identity (97.57% nucleotide identity) with that in 

pHNSHP45. Interestingly, pCREC-527_4 has nucleotide substi-

tutions in the 5´-region of pilS, resulting in a shortened PilS pro-

tein, a truncated hypothetical protein following a one nucleotide 

deletion of the heptameric adenine, and a rearranged shufflon 

(Fig. 1B).

The -35 and -10 sequences of the mcr-1 promoter region 

were identified by 5´ rapid PCR amplification of cDNA ends and 

compared with the pAf23 plasmid from a clinical E. coli strain 

isolated in South Africa [24]. The sequences in pUSU-

ECO-12704_4 and pCREC-527_4 were identical to those of 

pAf23, while that in pCRENT-301_1 contained a substitution in 

the -10 sequence generating a weaker consensus sequence 

(TAAAAT vs TATAAT) relative to the other two plasmids. The pu-

tative ribosomal binding site (RBS) of mcr-1 in pCRENT-301_1 

was GAGTAG, identical to that in pAf23, while the RBS of the 

other two plasmids had a one nucleotide difference, GATTAG.

The frequency of pUSU-ECO-12704_4 plasmid transfer was 

the highest, 2.8×10-5 on the membrane surface and 1.1×10-5 

in liquid. Plasmid pCREC-527_4 transfer frequency was 

9.6×10-7 on the membrane surface and <1.0×10-10 in liquid. 

Plasmid pCRENT-301_1 transfer frequency was below the 

1.0×10-10 detection threshold, both on the membrane surface 

and in liquid. For E. coli USU-ECO-12704, which had the high-

Table 2. Colistin MICs in the mcr-1 harboring Enterobacteriaceae

Strain Colistin MIC (mg/L)

Escherichia coli USU-ECO-12704 4

Enterobacter aerogenes CRENT-301 32

E. coli CREC-257 4

E. coli ATCC 25922 0.5

E. coli EJ53-RifR 0.5

E. coli EJ53-RifR / pUSU-ECO-12704_4 4

Klebsiella pneumoniae Kpn-RifR 2

K. pneumoniae Kpn-RifR / pUSU-ECO-12704_4 8

Enterobacter cloacae Ecl-RifR 0.5

E. cloacae Ecl-RifR / pUSU-ECO-12704_4 1

Abbreviation: MIC, minimal inhibitory concentration. 
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est conjugal efficiency, mating was carried out with K. pneu-
moniae and E. cloacae recipients, and plasmid transfer was ob-

served in only liquid media with a frequency of 3.0×10-9 in K. 
pneumoniae and 1.1×10-10 in E. cloacae. 

An IncI2 plasmid possessing the mcr-1 gene found in an E. 
coli isolate from the blood culture of a patient with cholangitis 

identified in Korea [25] exhibits a nearly identical structure to 

that of pCRENT-301_1, except for one copy of insertion se-

Fig. 1. Comparative analyses of the mcr-1-plasmids from clinical Enterobacteriaceae strains and livestock-origin Escherichia coli strains. (A) 
Left, molecular phylogeny was conducted by neighbor joining analysis of nucleotide sequences (324 bp) of the replication origin of the mcr-
1-plasmids. Multiple sequence alignments were performed with MUSCLE v3.8, and the phylogenetic tree was reconstructed using the dis-
tance method implemented in the BioNJ program [34]. Plasmid names are indicated in each taxon along with the size in brackets. Strain 
name and GenBank accession number are indicated below the plasmid name, if available. Color codes: Black, clinical Enterobacteriaceae 
strains; blue, E. coli from healthy chickens; red, E. coli from chicken carcasses; and green, E. coli from diseased pig. Right, schematic rep-
resentation of plasmid structures. The sequence of each plasmid was aligned using BlastN and compared using the Artemis Comparison 
Tool. Highly-conserved regions (>96% nucleic acid identity) are indicated in red, and moderately conserved regions (>92% nucleic acid 
identity) are indicated in blue. Open arrows, open reading frames; blue, the replication origin; red, antimicrobial resistance; yellow, plasmid 
backbone; orange, transposases; and green, plasmid transfer. (B) The yellow arrow indicates the site-specific recombinase rci gene, and 
the green arrow indicates the pilus assembly pilV gene. Black arrowheads represent the six 19-bp repeats. Open reading frames in the di-
rection of translation are indicated by arrows.

A

B
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quence IS679 downstream of the replication origin (Fig. 1A). 

The promoter sequences of the two plasmids are also identical.

5.  Comparison of mcr-1-plasmids in E. coli strains from 
those in livestock 

Ten of the 11 mcr-1-plasmids in E. coli strains from either 

healthy chickens or chicken carcasses were IncI2 type, the 

same as the three plasmids in clinical Enterobacteriaceae 

strains. Interestingly, one E. coli plasmid from a diseased pig 

belonged to type IncX4. The 10 IncI2-type plasmids were 

60,652 to 70,121 bp in length, and the plasmid backbone was 

indistinguishable from that of pCRENT-301_1, except the shuf-

flon region (Fig. 1A). The longest pS03-109 plasmid had a 

7,758-bp duplication of the region including conjugative ele-

ments resulting in a length of 70,121 bp. Remarkably, pA03-

007 possessed a copy of insertion sequence ISApl1 upstream 

of the mcr-1 gene. The only IncX4-type plasmid was 46,931 bp 

in length. This plasmid shared only the mcr-1 gene and the 

downstream partial pap2 with the ten IncI2 plasmids. None of 

the 11 plasmids in livestock isolates possessed known antimi-

crobial resistance determinants except for mcr-1.

The phylogeny corresponded to plasmid structure analysis. 

The pCRENT-301_1 plasmid in clinical E. aerogenes was in-

cluded in the clade of 11 plasmids in livestock isolates, while 

the other two plasmids in clinical E. coli strains belonged to a 

clade split from the other IncI2-type plasmids.

DISCUSSION

Following a report on livestock-origin mcr-1-positive E. coli 
strains isolated between 2013 and 2015 in Korea [21], we re-

port three clinical Enterobacteriaceae strains carrying the gene, 

identified in 2012, 2013, and 2015. The three strains were well-

prepared in terms of fitness in clinical settings. pCRENT-301_1 

in E. aerogenes co-carried the blaCTX-M-55 gene encoding ESBL, 

which could provide a great advantage when encountering the 

third generation cephalosporins; the two mcr-1-positive E. coli 
strains harbored secondary plasmids carrying multiple genes for 

antimicrobial resistance, including blaCTX-M-55 and blaCTX-M-27 en-

coding ESBLs and blaNDM-9 encoding a carbapenemase.

In terms of molecular epidemiology, the three strains, one E. 
aerogenes and two E. coli belonging to either ST1011 or ST101, 

were clearly distinct. Among the 11 livestock isolates from Ko-

rea, only one E. coli strain was ST101 [21]. An E. coli ST101 

clinical isolate from Brazil harboring an IncX4 mcr-1-plasmid 

has been identified [26], and an E. coli ST1011 strain possess-

ing an IncX4 mcr-1-plasmid has been isolated from a sputum 

specimen in Egypt [27]. 

Despite the divergent hosts, the incompatibility type of all mcr-
1-plasmids in clinical isolates was IncI2. The representative 

IncI2 plasmid, R721, possesses pil and tra gene clusters as-

sembling thin and thick conjugal pili, respectively [28], neces-

sary for plasmid transfer [29]. Among the three IncI2 plasmids, 

pCRENT-301_1 completely lost conjugal capacity, possibly ow-

ing to a truncated PilU prepilin peptidase, which is essential for 

thin pilus formation [30]. The pCREC-527_4 plasmid produces 

a premature PilS pilin precursor resulting in diminished plasmid 

transfer efficiency. In addition, the rearrangement of the pilV 

gene due to rci-derived DNA reshuffling allowed recipient-speci-

ficity [31]; pUSU-ECO-12704_4 exhibited higher conjugal effi-

ciency in E. coli compared with the other species recipients. In-

terestingly, the pUSU-ECO-12704_4 plasmid conferred a differ-

ent level of colistin resistance in each of the bacterial hosts, 

which was compatible with plasmid copy number. The relatively 

lower plasmid transfer rates compared with that of the first iden-

tified mcr-1 plasmid, pHNSHP45 [2], could be because of bac-

terial host background, corresponding with the diverse transfer 

efficiency of IncI2 mcr-1-plasmids in livestock isolates [21].

The notably higher colistin MIC of E. aerogenes CRENT-301 

compared with the other two E. coli strains could also be associ-

ated with bacterial host background. Enterobacteriaceae strains 

harboring the mcr-1 plasmid varied in colistin susceptibilities by 

species (Table 2). In addition, plasmid copy number, which was 

likely responsible for the elevated colistin MIC from the recipient 

strain, was dependent on bacterial species. 

The 11 mcr-1-plasmids in livestock isolates belonged to two 

incompatibility groups and differed according to the isolate ori-

gin: the plasmids in chicken isolates were IncI2, similar to pHN-

SHP45 and the plasmids in clinical isolates, while the plasmid 

in the pig isolate was type IncX4. Except for incompatibility type, 

no specific trait differences were identified in the pig isolates 

[21]. ISApl1 was likely involved in mcr-1 gene acquisition [13, 

32] in the plasmids, and the insertion sequence was identified 

in one of the 11 plasmids. Unfortunately, only the nucleotide se-

quences of the mcr-1-possessing plasmids were available for 

the 11 livestock isolates; thus, no further analyses were possible.

This study has an obvious limitation concerning the clarifica-

tion of mechanisms involved in colistin resistance. Among the 

subjected isolates, 1,347 were resistant to colistin; however, 

only three of those conferred resistance by harboring the mcr-1 

gene, and the others remained unknown. The mechanism of 

resistance, moreover, a novel type of mcr gene, should be in-
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vestigated in the future. 

The mcr-1-possessing strains identified in this study support 

this concept. Better stewardship for the proper usage of antimi-

crobials, as well as collaborative surveillance in terms of One 

Health, is essential. 
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