OPEN ACCESS pISSN 2234-3806
eISSN 2234-3814

Cited by CrossRef (93)

  1. Edward Cunningham-Oakes, Rebecca Weiser, Tom Pointon, Eshwar Mahenthiralingam. Understanding the challenges of non-food industrial product contamination. 2019;366
    https://doi.org/10.1093/femsle/fnaa010
  2. Olivier Braissant, Georg Müller, Adrian Egli, Andreas Widmer, Reno Frei, Armin Halla, Dieter Wirz, Thomas C. Gasser, Alexander Bachmann, Florian Wagenlehner, Gernot Bonkat, K. C. Carroll. Seven Hours to Adequate Antimicrobial Therapy in Urosepsis Using Isothermal Microcalorimetry. J Clin Microbiol 2014;52:624
    https://doi.org/10.1128/JCM.02374-13
  3. . Molecular Microbiology. 2014.
    https://doi.org/10.1128/9781555819071.ch8
  4. Mwanaisha Mkangara, Ernest R. Mbega, Musa Chacha. Molecular identification of Salmonella Typhimurium from village chickens based on invA and spvC genes. Vet World 2020;13:764
    https://doi.org/10.14202/vetworld.2020.764-767
  5. Dina Yamin, Vuk Uskoković, Abubakar Wakil, Mohammed Goni, Shazana Shamsuddin, Fatin Mustafa, Wadha Alfouzan, Mohammed Alissa, Amer Alshengeti, Rana Almaghrabi, Mona Fares, Mohammed Garout, Nawal Al Kaabi, Ahmad Alshehri, Hamza Ali, Ali Rabaan, Fatimah Aldubisi, Chan Yean, Nik Yusof. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics 2023;13:3246
    https://doi.org/10.3390/diagnostics13203246
  6. N. V. Punina, N. M. Makridakis, M. A. Remnev, A. F. Topunov. Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 2015;9
    https://doi.org/10.1186/s40246-015-0037-z
  7. Karen Butina, Ana Tomac, Ferdinand X. Choong, Hamid Shirani, K. Peter R. Nilsson, Susanne Löffler, Agneta Richter-Dahlfors. Optotracing for selective fluorescence-based detection, visualization and quantification of live S. aureus in real-time. npj Biofilms Microbiomes 2020;6
    https://doi.org/10.1038/s41522-020-00150-y
  8. S. Dinarelli, M. Girasole, S. Kasas, G. Longo. Nanotools and molecular techniques to rapidly identify and fight bacterial infections. Journal of Microbiological Methods 2017;138:72
    https://doi.org/10.1016/j.mimet.2016.01.005
  9. Edward Cunningham-Oakes, Tom Pointon, Barry Murphy, Stuart Campbell-Lee, Thomas R. Connor, Eshwar Mahenthiralingam. Novel application of metagenomics for the strain-level detection of bacterial contaminants within non-sterile industrial products – a retrospective, real-time analysis . 2022;8
    https://doi.org/10.1099/mgen.0.000884
  10. GrÉgory Dubourg, Pierre-Edouard Fournier. Infectious Diseases. 2022.
    https://doi.org/10.1016/B978-0-7020-6285-8.00161-1
  11. Xiang Yang, Ke Yang, Yang Luo, Weiling Fu. Terahertz spectroscopy for bacterial detection: opportunities and challenges. Appl Microbiol Biotechnol 2016;100:5289
    https://doi.org/10.1007/s00253-016-7569-6
  12. Veronika Ozana, Karel Hruška. Instrumental analytical tools for mycobacteria characterisation. Czech J. Food Sci. 2021;39:235
    https://doi.org/10.17221/69/2021-CJFS
  13. Yuanyuan Zhou, Xinhui Li, He Yan. Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment. Antibiotics 2020;9:839
    https://doi.org/10.3390/antibiotics9120839
  14. O. Braissant, A. Bachmann, G. Bonkat. Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods 2015;76:27
    https://doi.org/10.1016/j.ymeth.2014.10.009
  15. Paivo Kinnunen, Maureen E. Carey, Elizabeth Craig, Sundaresh N. Brahmasandra, Brandon H. McNaughton. Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sensors and Actuators B: Chemical 2014;190:265
    https://doi.org/10.1016/j.snb.2013.08.070
  16. Elena Cuadros. The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology. 2014.
    https://doi.org/10.1016/B978-0-12-814451-0.00009-5
  17. Stefan Zimmermann, Erin McElvania. Laboratory Automation in the Microbiology Laboratory: an Ongoing Journey, Not a Tale?. J Clin Microbiol 2021;59
    https://doi.org/10.1128/JCM.02592-20
  18. Jing Gao, Qiujing Chen, Yiqian Peng, Nanyan Jiang, Youhao Shi, Chunmei Ying. Copan Walk Away Specimen Processor (WASP) Automated System for Pathogen Detection in Female Reproductive Tract Specimens. Front. Cell. Infect. Microbiol. 2021;11
    https://doi.org/10.3389/fcimb.2021.770367
  19. Changjiang Yu, Wei Guo, Zhulai Zhang, Yuting Ma, Xiaobei Cao, Na Sun, Yingyao Cui, Yunshen Wang, Wenyu Cui, Yongsheng Xu, Jianghua Zhan. The Impact of mNGS Technology in the Etiological Diagnosis of Severe Pneumonia in Children During the Epidemic of COVID-19. IDR 2023;Volume 16:2395
    https://doi.org/10.2147/IDR.S403851
  20. Jan Iciek, Ilona Błaszczyk, Magdalena Molska. Microbial Production of Food Ingredients and Additives. 2023.
    https://doi.org/10.1016/B978-0-12-811520-6.00015-5
  21. Xiaoyan Xu, Nong Xiao, Minghua Yang, Yue Su, Yinlong Guo. Discrimination of the microbial subspecies using the ribosomal protein spectra coupled with the metabolite high resolution mass spectra. Talanta 2020;208:120361
    https://doi.org/10.1016/j.talanta.2019.120361
  22. Nicola Zetola, Chawangwa Modongo, Keikantse Matlhagela, Enoch Sepako, Ogopotse Matsiri, Tsaone Tamuhla, Bontle Mbongwe, Eugenio Martinelli, Giorgio Sirugo, Roberto Paolesse, Corrado Di Natale. Identification of a Large Pool of Microorganisms with an Array of Porphyrin Based Gas Sensors. Sensors 2016;16:466
    https://doi.org/10.3390/s16040466
  23. Franz Ratzinger, Katharina Eichbichler, Michael Schuardt, Irene Tsirkinidou, Dieter Mitteregger, Helmuth Haslacher, Thomas Perkmann, Klaus G. Schmetterer, Georg Doffner, Heinz Burgmann. Sepsis in standard care: patients’ characteristics, effectiveness of antimicrobial therapy and patient outcome—a cohort study. Infection 2015;43:345
    https://doi.org/10.1007/s15010-015-0771-0
  24. S. Le Page, A. van Belkum, C. Fulchiron, R. Huguet, D. Raoult, J.-M. Rolain. Evaluation of the PREVI® Isola automated seeder system compared to reference manual inoculation for antibiotic susceptibility testing by the disk diffusion method. Eur J Clin Microbiol Infect Dis 2015;34:1859
    https://doi.org/10.1007/s10096-015-2424-8
  25. . .
    https://doi.org/
  26. . .
    https://doi.org/
  27. Yannick Charretier, Jacques Schrenzel. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clinical Apps 2016;10:964
    https://doi.org/10.1002/prca.201600041
  28. Elnaz Nazemi, Walid M. Hassen, Eric H. Frost, Jan J. Dubowski. Growth of Escherichia coli on the GaAs (001) surface. Talanta 2018;178:69
    https://doi.org/10.1016/j.talanta.2017.08.097
  29. Antony C. Raymond, Sam Oussedik. The Infected Total Knee Arthroplasty. 2018.
    https://doi.org/10.1007/978-3-319-66730-0_13
  30. Karsten Becker, Sören Schubert. Editorial: MALDI-TOF MS Application for Susceptibility Testing of Microorganisms. Front. Microbiol. 2020;11
    https://doi.org/10.3389/fmicb.2020.568891
  31. Raju V. Misra, Tom Gaulton, Nadia Ahmod, Min Fang, Martin Hornshaw, Jenny Ho, Saheer E. Gharbia, Haroun N. Shah. MALDI‐TOF and Tandem MS for Clinical Microbiology. 2020.
    https://doi.org/10.1002/9781118960226.ch13
  32. Alexander P. Demchenko. Introduction to Fluorescence Sensing. 2020.
    https://doi.org/10.1007/978-3-031-19089-6_13
  33. Marie Horká, Marie Vykydalová, Filip Růžička, Jiří Šalplachta, Veronika Holá, Milada Dvořáčková, Anna Kubesová, Karel Šlais. CIEF separation, UV detection, and quantification of ampholytic antibiotics and bacteria from different matrices. Anal Bioanal Chem 2014;406:6285
    https://doi.org/10.1007/s00216-014-8053-8
  34. Natalie N. Whitfield, Raquel M. Martinez, Donna M. Wolk. Manual of Commercial Methods in Clinical Microbiology. 2014.
    https://doi.org/10.1002/9781119021872.ch24
  35. Joanna Białecka, Katarzyna Rak, Aneta Kiecka. Gonococci – Pathogens of Growing Importance. Part 1. Current Data on Diagnostics, Genotyping and Therapy.. 2024;63:3
    https://doi.org/10.2478/am-2024-0001
  36. Salman S. Ahmed, Emine Alp, Aysegul Ulu-Kilic, Mehmet Doganay. Establishing molecular microbiology facilities in developing countries. Journal of Infection and Public Health 2015;8:513
    https://doi.org/10.1016/j.jiph.2015.04.029
  37. Andrew E. Clark, Erin J. Kaleta, Amit Arora, Donna M. Wolk. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin Microbiol Rev 2013;26:547
    https://doi.org/10.1128/CMR.00072-12
  38. Maurizio Sanguinetti, Brunella Posteraro. Mass spectrometry applications in microbiology beyond microbe identification: progress and potential. Expert Review of Proteomics 2016;13:965
    https://doi.org/10.1080/14789450.2016.1231578
  39. Pierre-Edouard Fournier, Michel Drancourt, Philippe Colson, Jean-Marc Rolain, Bernard La Scola, Didier Raoult. Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol 2013;11:574
    https://doi.org/10.1038/nrmicro3068
  40. Y. López-Hernández, O. Patiño-Rodríguez, S.T. García-Orta, J.M. Pinos-Rodríguez. Mass spectrometry applied to the identification ofMycobacterium tuberculosisand biomarker discovery. J Appl Microbiol 2016;121:1485
    https://doi.org/10.1111/jam.13323
  41. Éric Pardoux, Agnès Roux, Raphaël Mathey, Didier Boturyn, Yoann Roupioz. Antimicrobial peptide arrays for wide spectrum sensing of pathogenic bacteria. Talanta 2019;203:322
    https://doi.org/10.1016/j.talanta.2019.05.062
  42. Mohsen Golabi, Anthony P.F. Turner, Edwin W.H. Jager. Tunable conjugated polymers for bacterial differentiation. Sensors and Actuators B: Chemical 2016;222:839
    https://doi.org/10.1016/j.snb.2015.09.033
  43. Chandrasekhar Kathera. Recent Developments in Applied Microbiology and Biochemistry. 2016.
    https://doi.org/10.1016/B978-0-12-816328-3.00003-9
  44. Manon Tardif, Emmanuel Picard, Victor Gaude, Jean‐Baptiste Jager, David Peyrade, Emmanuel Hadji, Pierre R. Marcoux. On‐Chip Optical Nano‐Tweezers for Culture‐Less Fast Bacterial Viability Assessment. Small 2022;18
    https://doi.org/10.1002/smll.202103765
  45. Osman Altun, Mohammed Almuhayawi, Måns Ullberg, Volkan Özenci. Clinical Evaluation of the FilmArray Blood Culture Identification Panel in Identification of Bacteria and Yeasts from Positive Blood Culture Bottles. J Clin Microbiol 2013;51:4130
    https://doi.org/10.1128/JCM.01835-13
  46. William E. Fondrie, Tao Liang, Benjamin L. Oyler, Lisa M. Leung, Robert K. Ernst, Dudley K. Strickland, David R. Goodlett. Pathogen Identification Direct From Polymicrobial Specimens Using Membrane Glycolipids. Sci Rep 2018;8
    https://doi.org/10.1038/s41598-018-33681-8
  47. Hagen Frickmann, Wycliffe Omurwa Masanta, Andreas E. Zautner. Emerging Rapid Resistance Testing Methods for Clinical Microbiology Laboratories and Their Potential Impact on Patient Management. BioMed Research International 2014;2014:1
    https://doi.org/10.1155/2014/375681
  48. Alex van Belkum, Sonia Chatellier, Victoria Girard, David Pincus, Parampal Deol, Wm Michael Dunne. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Review of Proteomics 2015;12:595
    https://doi.org/10.1586/14789450.2015.1091731
  49. Sheila M. Johnson, Mackenzie E. Collins, Melissa B. Miller. Impact of Molecular Diagnostics on Antimicrobial Stewardship. Advances in Molecular Pathology 2019;2:77
    https://doi.org/10.1016/j.yamp.2019.07.006
  50. Joshua S. Hewitt, Rachel A. Allbaugh, Danielle E. Kenne, Lionel Sebbag. Prevalence and Antibiotic Susceptibility of Bacterial Isolates From Dogs With Ulcerative Keratitis in Midwestern United States. Front. Vet. Sci. 2020;7
    https://doi.org/10.3389/fvets.2020.583965
  51. H. E. Dekter, C. C. Orelio, M. C. Morsink, S. Tektas, B. Vis, R. te Witt, W. B. van Leeuwen. Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy. Eur J Clin Microbiol Infect Dis 2017;36:81
    https://doi.org/10.1007/s10096-016-2773-y
  52. Tao Liang, Lisa M. Leung, Belita Opene, William E. Fondrie, Young In Lee, Courtney E. Chandler, Sung Hwan Yoon, Yohei Doi, Robert K. Ernst, David R. Goodlett. Rapid Microbial Identification and Antibiotic Resistance Detection by Mass Spectrometric Analysis of Membrane Lipids. Anal. Chem. 2019;91:1286
    https://doi.org/10.1021/acs.analchem.8b02611
  53. Melissa B. Miller, Faranak Atrzadeh, Carey-Ann D. Burnham, Stephen Cavalieri, James Dunn, Stephen Jones, Charles Mathews, Peggy McNult, John Meduri, Chris Newhouse, Duane Newton, Michael Oberholzer, John Osiecki, David Pedersen, Nicole Sweeney, Natalie Whitfield, Joe Campos, Colleen Suzanne Kraft. Clinical Utility of Advanced Microbiology Testing Tools. J Clin Microbiol 2019;57
    https://doi.org/10.1128/JCM.00495-19
  54. Karsten Becker, Antonella Lupetti. Editorial: MALDI-TOF MS in microbiological diagnostics: future applications beyond identification. Front. Microbiol. 2023;14
    https://doi.org/10.3389/fmicb.2023.1204452
  55. So Young Ryu, George A. Wendt, Courtney E. Chandler, Robert K. Ernst, David R. Goodlett. Model-Based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids. Anal. Chem. 2019;91:11482
    https://doi.org/10.1021/acs.analchem.9b03340
  56. Sergio Parco, Giulia Benericetti, Fulvia Vascotto, Giuseppina Palmisciano. Microbiome and diversity indices during blood stem cells transplantation - new perspectives?. Cent Eur J Public Health 2019;27:335
    https://doi.org/10.21101/cejph.a5393
  57. Kaixiang Zhang, Shangshang Qin, Sixuan Wu, Yan Liang, Jinghong Li. Microfluidic systems for rapid antibiotic susceptibility tests (ASTs) at the single-cell level. Chem. Sci. 2020;11:6352
    https://doi.org/10.1039/D0SC01353F
  58. Samuel L. Aitken, Vagish S. Hemmige, Hoonmo L. Koo, Nancy N. Vuong, Todd M. Lasco, Kevin W. Garey. Real-world performance of a microarray-based rapid diagnostic for Gram-positive bloodstream infections and potential utility for antimicrobial stewardship. Diagnostic Microbiology and Infectious Disease 2015;81:4
    https://doi.org/10.1016/j.diagmicrobio.2014.09.025
  59. Marie Laure Joly Guillou. Impact de l’automatisation sur l’organisation d’un laboratoire de bactériologie. Revue Francophone des Laboratoires 2016;2016:67
    https://doi.org/10.1016/S1773-035X(16)30174-5
  60. C. Martin, M.-C. Ploy. Automatisation en bactériologie. Journal des Anti-infectieux 2014;16:122
    https://doi.org/10.1016/j.antinf.2014.08.001
  61. Isabel Steppert, Jessy Schönfelder, Carolyn Schultz, Dirk Kuhlmeier. Rapid in vitro differentiation of bacteria by ion mobility spectrometry. Appl Microbiol Biotechnol 2021;105:4297
    https://doi.org/10.1007/s00253-021-11315-w
  62. Jia Lin Luo, Terry Jin, Linda Váradi, John D. Perry, David E. Hibbs, Paul W. Groundwater. Evaluation of fluorogenic aminonaphthalenesulfonamides and 6-hydrazinobenz[de]isoquinoline-1,3-diones for the detection of bacteria. Dyes and Pigments 2016;125:15
    https://doi.org/10.1016/j.dyepig.2015.09.031
  63. Olivier Vandenberg, Zisis Kozlakidis, Jacques Schrenzel, Marc Jean Struelens, Judith Breuer. Control of Infectious Diseases in the Era of European Clinical Microbiology Laboratory Consolidation: New Challenges and Opportunities for the Patient and for Public Health Surveillance. Front. Med. 2018;5
    https://doi.org/10.3389/fmed.2018.00015
  64. Sophie Amrane, Jean-Christophe Lagier. Metagenomic and clinical microbiology. Human Microbiome Journal 2018;9:1
    https://doi.org/10.1016/j.humic.2018.06.001
  65. Gregory Weston, Jesse T. Jacob, Susan Ray, Jay Varkey, Robert P. Gaynes. A Multicenter Study Measuring Appropriateness of Carbapenem Use. Infect. Control Hosp. Epidemiol. 2013;34:1324
    https://doi.org/10.1086/673981
  66. Vincent Templier, Agnès Roux, Yoann Roupioz, Thierry Livache. Ligands for label-free detection of whole bacteria on biosensors: A review. TrAC Trends in Analytical Chemistry 2016;79:71
    https://doi.org/10.1016/j.trac.2015.10.015
  67. Di Xiao, Fei Zhao, Huifang Zhang, Fanliang Meng, Jianzhong Zhang, G. V. Doern. Novel Strategy for Typing Mycoplasma pneumoniae Isolates by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Coupled with ClinProTools. J Clin Microbiol 2014;52:3038
    https://doi.org/10.1128/JCM.01265-14
  68. Michael Hombach, Carlos Ochoa, Florian P. Maurer, Tamara Pfiffner, Erik C. Böttger, Reinhard Furrer. Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing. J. Antimicrob. Chemother. 2016;71:141
    https://doi.org/10.1093/jac/dkv309
  69. J. J. Hirvonen, P. Matero, C. Siebert, J. Kauppila, R. Vuento, H. Tuokko, S. Boisset. Novel portable platform for molecular detection of toxigenic Clostridium difficile in faeces: a diagnostic accuracy study. Eur J Clin Microbiol Infect Dis 2017;36:783
    https://doi.org/10.1007/s10096-016-2860-0
  70. Ken Kikuchi. Translational Applications of Diagnostics of Infectious Diseases using Infectomics Approaches in Clinical Settings. JBMOA 2016;3
    https://doi.org/10.15406/jbmoa.2016.03.00071
  71. Jan J. De Waele, Murat Akova, Massimo Antonelli, Rafael Canton, Jean Carlet, Daniel De Backer, George Dimopoulos, José Garnacho-Montero, Jozef Kesecioglu, Jeffrey Lipman, Mervyn Mer, José-Artur Paiva, Mario Poljak, Jason A. Roberts, Jesus Rodriguez Bano, Jean-François Timsit, Jean-Ralph Zahar, Matteo Bassetti. Antimicrobial resistance and antibiotic stewardship programs in the ICU: insistence and persistence in the fight against resistance. A position statement from ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med 2018;44:189
    https://doi.org/10.1007/s00134-017-5036-1
  72. . .
    https://doi.org/
  73. M. Fredborg, F. S. Rosenvinge, E. Spillum, S. Kroghsbo, M. Wang, T. E. Sondergaard. Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur J Clin Microbiol Infect Dis 2015;34:2385
    https://doi.org/10.1007/s10096-015-2492-9
  74. Alberto Signoroni, Alessandro Ferrari, Stefano Lombardi, Mattia Savardi, Stefania Fontana, Karissa Culbreath. Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology. Nat Commun 2023;14
    https://doi.org/10.1038/s41467-023-42563-1
  75. Ana Margarida Sousa, Maria Olívia Pereira, Anália Lourenço. MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies. Journal of Biomedical Informatics 2015;55:55
    https://doi.org/10.1016/j.jbi.2015.03.007
  76. Irene Latorre, Verónica Saludes, Juana Díez, Andreas Meyerhans. Nucleic Acids as Molecular Diagnostics. 2015.
    https://doi.org/10.1002/9783527672165.ch09
  77. Evgeny A. Idelevich, Matthias Hoy, Dennis Görlich, Dennis Knaack, Barbara Grünastel, Georg Peters, Matthias Borowski, Karsten Becker. Rapid Phenotypic Detection of Microbial Resistance in Gram-Positive Bacteria by a Real-Time Laser Scattering Method†. Front. Microbiol. 2017;8
    https://doi.org/10.3389/fmicb.2017.01064
  78. Linda Váradi, Elias Y. Najib, David E. Hibbs, John D. Perry, Paul W. Groundwater. A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens. Molecules 2019;24:3550
    https://doi.org/10.3390/molecules24193550
  79. Özden Baltekin, Alexis Boucharin, Eva Tano, Dan I. Andersson, Johan Elf. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. U.S.A. 2017;114:9170
    https://doi.org/10.1073/pnas.1708558114
  80. Jung Y. Han, Michael Wiederoder, Don L. DeVoe. Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith. Microsyst Nanoeng 2019;5
    https://doi.org/10.1038/s41378-019-0063-4
  81. Pei-Wei Lee, Liben Chen, Kuangwen Hsieh, Amelia Traylor, Tza-Huei Wang. Harnessing Variabilities in Digital Melt Curves for Accurate Identification of Bacteria. Anal. Chem. 2023;95:15522
    https://doi.org/10.1021/acs.analchem.3c01654
  82. Kelly Wyres, Thomas Conway, Saurabh Garg, Carlos Queiroz, Matthias Reumann, Kathryn Holt, Laura Rusu. WGS Analysis and Interpretation in Clinical and Public Health Microbiology Laboratories: What Are the Requirements and How Do Existing Tools Compare?. Pathogens 2014;3:437
    https://doi.org/10.3390/pathogens3020437
  83. Roger Karlsson, Lucia Gonzales‐Siles, Fredrik Boulund, Åsa Lindgren, Liselott Svensson‐Stadler, Anders Karlsson, Erik Kristiansson, Edward R.B. Moore. MALDI‐TOF and Tandem MS for Clinical Microbiology. 2014.
    https://doi.org/10.1002/9781118960226.ch16
  84. Milene Gonçalves Quiles, Bruno Cruz Boettger, Fernanda Matsiko Inoue, Jussimara Monteiro, Daniel Wagner Santos, Vinicius Ponzio, Fabianne Carlesse, Paola Cappellano, Cecilia Godoy Carvalhaes, Antonio Carlos Campos Pignatari. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry and real-time PCR in a combined protocol for diagnosis of bloodstream infections: a turnaround time approach. The Brazilian Journal of Infectious Diseases 2019;23:164
    https://doi.org/10.1016/j.bjid.2019.05.005
  85. Astrid Tannert, Richard Grohs, Jürgen Popp, Ute Neugebauer. Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact. Appl Microbiol Biotechnol 2019;103:549
    https://doi.org/10.1007/s00253-018-9505-4
  86. Ekaterina Avershina, Abdolrahman Khezri, Rafi Ahmad. Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics—Current State and Whole Genome Sequencing Implementation Perspectives. Antibiotics 2023;12:781
    https://doi.org/10.3390/antibiotics12040781
  87. Andrea Endimiani, Michael R. Jacobs. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives. Infectious Disease Clinics of North America 2016;30:323
    https://doi.org/10.1016/j.idc.2016.02.002
  88. A. Novelli-Rousseau, I. Espagnon, D. Filiputti, O. Gal, A. Douet, F. Mallard, Q. Josso. Culture-free Antibiotic-susceptibility Determination From Single-bacterium Raman Spectra. Sci Rep 2018;8
    https://doi.org/10.1038/s41598-018-22392-9
  89. L. Jiang, L. Boitard, P. Broyer, A.-C. Chareire, P. Bourne-Branchu, P. Mahé, M. Tournoud, C. Franceschi, G. Zambardi, J. Baudry, J. Bibette. Digital antimicrobial susceptibility testing using the MilliDrop technology. Eur J Clin Microbiol Infect Dis 2016;35:415
    https://doi.org/10.1007/s10096-015-2554-z
  90. Yiying Cai, Hui Leck, Tze Peng Lim, Jocelyn Teo, Winnie Lee, Li Yang Hsu, Tse Hsien Koh, Thuan Tong Tan, Thean-Yen Tan, Andrea Lay-Hoon Kwa, Massimiliano Galdiero. Using an Adenosine Triphosphate Bioluminescent Assay to Determine Effective Antibiotic Combinations against Carbapenem-Resistant Gram Negative Bacteria within 24 Hours. PLoS ONE 2015;10:e0140446
    https://doi.org/10.1371/journal.pone.0140446
  91. Thanai Paxton. Ambient Ionization Mass Spectrometry in Life Sciences. 2015.
    https://doi.org/10.1016/B978-0-12-817220-9.00008-4
  92. Jan Busche, Svenja Möller, Ann-Kathrin Klein, Matthias Stehr, Foelke Purr, Margherita Bassu, Thomas Burg, Andreas Dietzel. Nanofluidic Immobilization and Growth Detection of Escherichia coli in a Chip for Antibiotic Susceptibility Testing. Biosensors 2020;10:135
    https://doi.org/10.3390/bios10100135
  93. Ferdinando F. Andrade, Rosário Gomes, Inês Martins-Oliveira, Ana Dias, Acácio G. Rodrigues, Cidália Pina-Vaz. A Rapid Flow Cytometric Antimicrobial Susceptibility Assay (FASTvet) for Veterinary Use – Preliminary Data. Front. Microbiol. 2020;11
    https://doi.org/10.3389/fmicb.2020.01944