OPEN ACCESS pISSN 2234-3806
eISSN 2234-3814

Table. 1. Summary of studies using ML for predicting IHCA
Authors (publication year) Country Patient group Sample size, N Key variables Outcome Best ML model IHCA prediction performance, AUROC Reference
Ong, et al. (2012) Singapore ED 925 Demographics, vital signs, HRV metrics Cardiac arrest SVM 0.781 [29]
Liu, et al. (2014) Singapore ED 702 Vital signs, HRV metrics Major adverse cardiac events* SVM 0.812 [30]
Churpek, et al. (2014) US GW 269,999 Demographics, vital signs, laboratory values Cardiac arrest, ICU transfer, or death RF (eCARTTM) 0.77 [31]
Green, et al. (2018) US GW 107,868 Demographics, vital signs, laboratory values Cardiac arrest, ICU transfer, or death RF (eCARTTM) 0.801 [32]
Bartkowiak, et al. (2018) US Postoperative 32,537 Demographics, vital signs, laboratory values Cardiac arrest, ICU transfer, or death RF (eCARTTM) 0.79 [33]
Kwon, et al. (2018) South Korea GW 52,131 Vital signs Cardiac arrest or ICU transfer LSTM(DeepCARSTM) 0.850 [34]
Jang, et al. (2019) South Korea ED 374,605 Demographics, chief complaint, vital signs, consciousness level Cardiac arrest MLP-LSTM 0.936 [35]
Kim, et al. (2019) South Korea ICU 29,181 Vital signs, treatment history, health status, recent surgery Cardiac arrest LSTM 0.896 [36]
Cho, et al. (2020) South Korea GW 8,039 Vital signs Cardiac arrest or ICU transfer LSTM(DeepCARSTM) 0.865 [37]
Chae, et al. (2021) South Korea GW 83,543 Demographics, vital signs, laboratory values Cardiac arrest Various No data [9]
Kim, et al. (2022) South Korea ED 1,350,693 Demographics, vital signs, oxygen supply, oxygen saturation, ED occupancy Cardiac arrest XGBoost 0.927 [11]
Lee, et al. (2023) South Korea ICU 4,821 HRV metrics Cardiac arrest LGBM 0.881 [13]
Cho, et al. (2023) South Korea GW 55,083 Vital signs Cardiac arrest or ICU transfer LSTM(DeepCARSTM) 0.869 [12]
Ding, et al. (2023) China GW 7,779 Laboratory values Cardiac arrest ETC 0.920 [14]
Lu, et al. (2023) Taiwan ED 316,465 Demographics, chief complaints, vital signs, BMI, oxygen saturation, consciousness Cardiac arrest RF 0.931 [10]
Wu, et al. (2024) Taiwan GW 32,719 Demographics, vital signs, laboratory values, BMI, CNS medication use Cardiac arrest SVM 0.811 [16]
Lee, et al. (2024) Taiwan GW 114,276 Demographics, comorbidities, presenting illness, vital signs Cardiac arrest SVM 0.945 [15]
Park, et al. (2025) South Korea GW, ICU 62,061 Demographics, vital signs, laboratory values, ICD-10 code Cardiac arrest XGBoost 0.934 [17]

*Major adverse cardiac events include death, cardiac arrest, sustained ventricular tachycardia, and hypotension requiring inotropes or intra-aortic balloon pump insertion.

Abbreviations: ML, machine learning; IHCA, in-hospital cardiac arrest; AUROC, area under ROC curve; BMI, body mass index; CNS, central nervous system; ED, emergency department; ETC, extra trees classifier; GW, general ward; HRV, heart rate variability; ICU, intensive care unit; LGBM, light gradient boosting machine; LR, logistic regression; LSTM, long short-term memory; MLP, multilayer perception; RF, random forest; RNN, recurrent neural network; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; ICD-10, International Classification of Disease, Tenth Revision.

Ann Lab Med 2025;45:117~120 https://doi.org/10.3343/alm.2024.0696

© Ann Lab Med