Exploring Appropriate Reference Intervals and Clinical Decision Limits for Glucose-6-Phosphate Dehydrogenase Activity in Individuals From Guangzhou, China
2024; 44(6): 487-496
Ann Lab Med 2019; 39(5): 478-487
Published online September 1, 2019 https://doi.org/10.3343/alm.2019.39.5.478
Copyright © Korean Society for Laboratory Medicine.
A-Lum Han , M.D.1,*, Hak-Ryul Kim , M.D.2,*, Keum-Ha Choi , M.D.3, Ki-Eun Hwang , M.D.2, Mengyu Zhu , B.S.4, Yuya Huang , B.S.4, Moxin Wu , M.S.4, Young-Jin Lee , M.D.4, Min-Cheol Park , Ph.D.5, Ji-Hyun Cho , M.D.4, and Do-Sim Park , M.D.4,6
Departments of 1Family Medicine, 2Internal Medicine, 3Pathology, 4Laboratory Medicine and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Korea; 5Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Wonkwang University, Iksan, Korea; 6Wonkwang Institute of Clinical Medicine, Wonkwang University Hospital, Iksan, Korea
Correspondence to: Do-Sim Park, M.D.
Department of Laboratory Medicine, Wonkwang University Hospital, 895 Muwang-ro, Iksan 54538, Korea
Tel: +82-63-859-1863, Fax: +82-63-842-3786, E-mail: emailds@hanmail.net
*These authors contributed equally to this work.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Plasma epidermal growth factor receptor (
We analyzed 156 plasma and PE-SUP samples (31 paired samples) from 116 individuals. We compared the kits in terms of accuracy, assessed genotype concordance (weighted κ with 95% confidence intervals), and calculated Spearman's rho between semi-quantitatively measured
cobasv2 tended to have higher accuracy than Mutyper (73% vs 69%,
The kits have similar performance in terms of
Keywords: Epidermal growth factor receptor, Mutation, Plasma, Pleural effusion supernatant, cobas EGFR Mutation test v2, PANAMutyper-R-EGFR
The epidermal growth factor receptor (
Although a tissue biopsy is recommended for
In Korea, two commercial plasma
This two-step combined study was performed at Wonkwang University Hospital, Iksan, Korea, from January 2012 through August 2018. The initial step, which included candidate enrollment, was performed prospectively, and the case-controlled study of selected samples was conducted retrospectively. During the clinical sample enrollment process, dipotassium-EDTA (K2-EDTA)-treated plasma or PE-SUP was prepared by centrifugation for 15 minutes at 2,500×
After reviewing the medical records of the candidates, we retrospectively selected 156 clinical samples (Table 1; 98 plasma and 58 PE-SUP) from 116 individuals through the biobank of Wonkwang University Hospital. Among these 116 individuals, 82 provided a single sample, and 34 provided two to four samples (no participant provided the same type of sample more than three times).
Additionally, 47 serially diluted contrived (SDC) samples (plasma/ PE-SUP mixture samples) were prepared using separate aliquot parts of samples from 12 of the 116 individuals (six LADC patients and six healthy individuals). In detail, four different types of
This study was approved by the Institutional Review Board (IRB) of Wonkwang University Hospital (IRB No. 2017-02-029). Samples and medical records of the individuals were obtained after they provided a written informed consent.
Plasma or PE-SUP cfDNA was isolated using the cobas cfDNA sample preparation kit (Roche Molecular Systems), according to the manufacturer's instructions. For all clinical plasma samples, plasma cfDNA was extracted from a starting volume of 2 mL and eluted in 100 µL of elution buffer. Two equal volumes of eluted cfDNA samples were homogenized (200 µL of cfDNA was extracted from 4 mL of each plasma sample) to ensure evenly matched comparative conditions between the two kits. For PE-SUP cfDNA extraction, 0.5 mL (25% of the plasma sample volume) of PE-SUP was used as the starting volume (the volume was determined by preliminary assessment). Except for the starting volume of PE-SUP, all other extraction processes were conducted in the same manner for all samples.
Each cfDNA of 47 SDC samples was prepared as per the clinical sample extraction (100/110 µL of cfDNA extracted from a 2.0/2.2 mL starting volume), duplication (final volume of 200/220 µL from a 4.0/4.4 mL starting volume), and homogenizing processes.
To ensure an even-handed comparison of the plasma assay kits, immediately prior to target DNA amplification, ~220 µL of cfDNA elute was thoroughly mixed to maximize the homogeneity of the DNA content. Subsequently, two aliquots (75 µL for cobasv2 and 30 µL for Mutyper) of the cfDNA elute were amplified according to the manufacturer's instructions. PCR amplification of cobasv2 was performed in three separate wells per sample, and each well composition was as follows: 25 µL of cfDNA, 20 µL of master mix reagent, and 5 µL of magnesium acetate. PCR amplification of Mutyper was performed in six separate wells, and each well composition was as follows: 5 µL of cfDNA, 19 µL of PCR reagent, and 1 µL of Taq DNA polymerase.
In the analysis of 156 clinical samples, overall data was defined as the summated results obtained from plasma and PE-SUP together, and sample-specific data was defined as the result obtained from either plasma or PE-SUP individually. In the analysis of 47 SDC samples, overall sensitivity was defined as the summated sensitivity obtained from both more-dilute and less-dilute samples (dilution ratio: ≥ or <1:1,000, respectively).
The reference genotypes in each case were defined according to the corresponding TC genotypes (N=137) analyzed using direct sequencing and/or a peptide nucleic acid-clamping assay during routine diagnostic and follow-up processes. The following three exceptional conditions (N=19; see Supplemental Data Table S1) that were relevant to the actual false-negative results of tissue testing [8,10,11,12,14,15,16,17], detection of multiple minor-type mutants (any
Fisher's exact test was used for comparing accuracy, sensitivity, specificity, and limits of detection (LODs). Weighted κ-values, with 95% confidence intervals, were calculated to evaluate concordance. The values were classified as follows: 0.81–1.0, very good; 0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and <0.20, poor. Spearman's rho (ρ) with
Cobasv2 tended to show higher accuracy in terms of detecting the presence/absence of
Comparisons of the 31 paired samples revealed remarkable differences in accuracy (
A detailed comparison of the two kits in terms of
The
SQIs measured using cobasv2 and Mutyper showed strong positive correlations for the three major
The predicted LOD ranges of the two kits (Fig. 1) overlapped with each other in six of the nine matched LOD comparisons using SDC samples; however, in some cases, they were not clearly definable or distinguishable from incidental detection failures. Two LODs of the cobasv2 series (dilution #1-T790M-series and dilution #2-L858R-series) and one LOD of the Mutyper series (dilution #4-T790M-series) were higher than those of their counterparts (2/9 vs 1/9,
Accuracy and sensitivity did not differ significantly between the kits for each of the three major types of
Although cobasv2 had higher sensitivity than Mutyper in the relatively small number of mutant-containing samples, cobasv2 produced unexpected simultaneous false-negative results for all three types of
Of the nine relationship comparisons (the correlation coefficients between the dilution effect and SQIs), six comparisons did not show significant differences (Fig. 1). Only three comparisons showed significant differences (Fig. 1); in two comparisons (dilution #1-E19del-series and dilution #4-L858R-series), cobasv2-SQIs showed a closer relationship with dilution effect than Mutyper-SQIs (cobasv2-ρ>Mutyper-ρ) and in one comparison (dilution #2-L858R-series), Mutyper-SQIs showed a closer relationship with dilution effect than cobasv2-SQIs (Mutyper-ρ>cobasv2-ρ). Thus, no difference (2/9 vs 1/9,
Liquid biopsy is emerging as a promising approach for noninvasive assessment of cancer gene profiles; its actual usefulness varies remarkably depending on the methods adopted, including DNA extraction, detection, and quantification [10,11]. In this regard, performance characterizations of current methods are important. We compared the performance of cobasv2 and Mutyper in terms of
Comparison of diagnostic parameters using 156 clinical samples showed similar performance between the kits. Although, cobasv2 showed slightly higher accuracy and sensitivity than Mutyper in plasma samples, these differences were not significant. This pattern held regardless of the specific genotype among the three major
Lung carcinomas are most often detected at stage IV [19]. Therefore, most PE-SUP samples, including the malignant PE-SUP samples, were obtained from stage IV patients (possibly greater chance of releasing tumor cells into PE). Hence, the plasma/PE-SUP paired-comparison findings could not reflect those of lower-stage (I–III) patients. Nonetheless, these paired comparisons provided evidence that PE-SUP can be suitably detected by both kits, at least in stage IV patients with PE. Moreover, even with a quarter of the plasma sample volume, PE-SUP is more efficient than plasma for detecting
For SDC samples, a marginal superior tendency (2/9 vs 1/9) was noted for cobasv2 in the LOD comparison of the three genotypes. This superior tendency of cobasv2 was more prominent in the sensitivity comparison based on dilution ratio (23% sensitivity difference in more-dilute samples vs 0% sensitivity difference in less-dilute samples). This implies that cobasv2 may have higher sensitivity than Mutyper for samples with low
However, we noticed unexpected false-negative results for all types of
With regard to the unexpected false-negative results obtained from cobasv2, we hypothesize that amplification/detection using cobasv2 is vulnerable to inhibition by certain materials contained in clinical liquid samples or/and agents related to cfDNA extraction [22,23,24] based on the following points: (1) the identical replicate findings (false-negatives using cobasv2 and true positives using Mutyper) using the remaining cfDNA aliquots; (2) a previous manufacturer's report regarding sample-specific potential inhibition (i.e., false-negatives generated only for plasma samples, but not for formalin-fixed paraffin-embedded tumor samples) using cobasv2 [25]; and (3) cobasv2 required a relatively large-volume ratio (25 µL/50 µL) of the extracted cfDNA elute (undiluted cfDNA extract volume/total PCR reaction volume) per well than Mutyper did (5 µL/25 µL). The third point indicates a higher concentration of cfDNA elute (this may be linked to the higher concentration of a certain PCR inhibitor that contained in cfDNA elute) in the cobasv2 PCR mixture than in the Mutyper PCR mixture.
Recent studies related to clinical outcomes have highlighted the importance of
Our results should be considered in the light of some limitations. We could provide only limited information for minor types, as opposed to major types, because of the low number of positive samples. Moreover, due to limited resources, we could not identify the exact cause of the false-negative results obtained using cobasv2. Further studies with a more specialized experimental design and larger sample sizes are needed.
In conclusion, cobasv2 and Mutyper have an overall similar performance in terms of
Definition method used for the correctly identified
Mutation detection and semi-quantification using two plasma
Abbreviations: